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Abstract

Quantitative measurements of environmental factors greatly improve the
quality of epidemiologic studies, but can pose challenges due to the presence of
upper or lower detection limits or interfering compounds, which do not allow for
precise measured values. We consider the regression of an environmental
measurement (dependent variable) on several covariates (independent variables).
Various strategies are commonly employed to impute values for interval-measured
data, including assignment of one-half the detection limit to non-detected values, or
of “fill-in” values randomly selected from an appropriate distribution. Based on a
limited simulation study, we found that the former approach can be biased, unless
the percentage of measurements below detection limits 1s small (5-10 percent). The
fill-in approach generally results in unbiased parameter estimates, but may produce -
biased variance estimates and thereby distort inference when 30 percent or more of
the data are below detection limits. Truncated data methods (e.g., Tobit regression)
and multiple imputation offer two unbiased approaches for analyzing measurement
data with detection limits. If interest resides solely on regression parameters, then
Tobit regression can be used. If individualized values for measurements below
detection limits are needed for additional analysis, such as relative risk regression
or graphical display, then multiple imputation produces unbiased estimates and
nominal confidence intervals unless the proportion of missing data is extreme. We
illustrate various approaches using measurements of pesticide residues in carpet

dust in control subjects from a case-control study of non-Hodgkin lymphoma.
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Introduction

Epidemiologic studies often collect quantitative measurement data to
improve precision and reduce bias in exposure assessment, and in the estimation of
the effect of exposure on risk of disease, as measured by odds ratios (Hatch and
Thomas 1993; Sim 2002). Some measurements serve as biomarkers for “dose”, e.g.,
residual radiation in tooth enamel as a marker of exposure to ionizing radiation
(Desrosiers and Schauer 2001), while other measures are more indirect, e.g.,
urinary cotinine level as an indicator of exposure to environmental tobacco smoke
(Woodward and Al Delaimy 1999). Problems in the analysis of measurement data
commonly arise because measurement procedures often have detection limits (DL).
A DL may represent a floor value, a ceiling value or an interval where precise
quantitative levels cannot be determined. For example, exposure assessment for
nuclear workers relied on radiation film badges which record radiation levels only
above a fixed minimum, due to limits in film photosensitivity (Gilbert et al. 1996;
Kerr 1994). Investigators encountered ceiling levels of particle bound pblycyclic
aromatic hydrocarbons in rural Chinese dwellings when values exceeded 60,000
ng/m°, the upper limit of the measurement protocol (Ligman et al. 2004).

Although values below or above a DL are “missing”, data are not missing at
random in the usual sense, since their absence reflects levels of exposure. This type
of missing data is called “nonignorable missing”, and the simple exclusion of such
“interval-measured” data can bias results (Little and Rubin 1987; Schafer 1997).

Analytic procedures for environmental measurement data with DLs are often
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presented in the context of environmental monitoring where the primary goal is
estimation of distributional parameters when numbers of measurements are
Iimited(Gleit 1985; Haas and Scheff 1990; Helsel 1990; Persson and Rootzen 197;
Singh and Nocerino 2002; Travis and Land 1990). In epidemiologic studies,
measurement data are used to characterize exposures of study subjects, and are
typically employed in two ways. Measurement data are used to develop regression
models to examine the relationship between a measured value (dependent variable)
and covariates (independent variables). Measurement data are also used as
covariates in a risk analysis to estimate the relationship between a binary disease
outcome and exposure measures and other factors. In the current paper, we focus
on the first application, namely, the regression of an exposure measurement on
covariate factors. The use of measurements with DLs in risk regression of will be
considered in another paper.

Investigators appiy various strategies for measurement data with DLs,
including replacement of measurements below a DL with a single value, e.g., DL,
DL/2 or DL/.2 (Helsel 1990; Hornung and Reed 1990). Less frequently,
measurements below a DL are assigned a value of zero. However, unless such
measurements indicate a true zero exposure, this latter strategy clearly distorts
results, and 1s not considered further. If the distribution of the measurement data
is known, e.g., measurements are log-normally distributed, then an alternative
strategy replaces values below the DL with expected values of the missing
measurements, conditional on being less than the DL (Garland et al. 1993; Gleit
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1985). For measurement 7Z and detection limit DL, we denote this value
E[Z|Z<DL]. Calculation of the conditional expected value requires the investigator
to either know or estimate parameters of the measurement distribution.

Substitution schemes like those described above are simple, since one value
replaces all measurements below the DL, and, except for K[Z | Z<DL], do not
consider distributional assumptions. However, since a single value represents all
measurements below the DL, parameter estimates and their variances are likely
biased, unless the proportion is small, which potentially distorts inference. This
limitation led to a single impute “fill-in” method (Helsel 1990; Moschandreas et al.
2001b; Moschandreas et al. 2001a). An investigator first characterizes the form of
the distribution and estimates its parameters, then assigns randomly sampled
values below the DL from the estimated distribution. Fill-in values along with
measured values above the DL are then used in analyses. With appropriate
estimation techniques, this approach accommodates multiple DLs.

As described in(Helsel 1990) and applied in(Moschandreas et al. 2001b), the
fill-in method did not include complex modeling of regression factors. In addition,
while the fill-in approach assigned random values from an appropriate distribution,
it did not account for the variability of the imputation process, since the inserted
values are not real data. In this paper, we illustrate methods for epidemiologic data’
that account for measurements with DLs, using data from a case-control study of
non-Hodgkin lymphoma (NHL) (Colt et al. 2004). The example evaluates the
relationship between concentrations of pesticide analytes in carpet dust and use of
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pesticide products in and around the home. We restrict analysis to control subjects,

with adjustment for study design factors.

Example data from a case-control study of NHL and pesticides

The principal exposure of the general population to pesticides occurs in the
home (Nigg et al. 1990) as the result of indoor use, track-in or drift from outdoors,
intrusion of vapors from foundation treatments, or take-home contamination from
occupational use (Bradman et al. 1997; Lewis et al. 1999; Lewis et al. 2001).
Pesticide residues are retained in carpets, migrating into the underlying foam pad,
and may persist for months or years. |

Data source. We consider data from controls from a multi-center,
population-based case-control study of NHL, conducted in the Detroit, Michigan
metropolitan area, the state of lowa, Los Angeles County, California, and the
Seattle, Washington metropolitan area (Colt et al. 2004). Controls include 1,057
residents between the ages of 20 and 74, frequency matched to cases on age, gender,
race, and study area, with an over-sampling of African American subjects in Los
Angeles and Detroit.

Interviewers collected information from respondents on lifetime residential
history, and the frequency and form of pesticides used to treat various types of pests
(e.g., flying insects, crawling insects, lawn weeds, etc.). Interviewers obtained
vacuum cleaner bags from 95 percent of subjects who used their vacuum cleaners

within the past year and owned at least half of their carpets or rugs for five years or
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more. Bags were shipped in insulated boxes by overnight mail to Southwest
Research Institute (San Antonio, TX) and placed in freezers. Samples were
collected and analyzed for 513 control subjects.

Measurement of carpet dust. The protocol for the collection and
measurement of dust samples has been described previously (Colt et al. 2004).
Briefly, dust samples were sieved through a 100-mesh sieve to obtain the fine (<150
um) dust, prior to extraction and analysis. Neutral extractions were carried out for
25 pesticides (18 insecticides, 6 herbicides, and ortho-phenylphenol), 7 polycyclic
aromatic hydrocarbons, and 5 polychlorinated biphenyl congeners. Acid extractions
were carried out for four herbicides and pentachlorophenol. Extracts were analyzed
using gas chromatography/mass spectrometry (GC/MS) in selected ion monitoring
mode. Analyte amounts were quantified using the internal standard method. In
the full study, GC/MS analysts were blinded to disease status.

After analyzing about half of the samples, investigators began monitoring
additional ions for some neutral analytes to clarify identification at low levels,
resulting inrraised DLs for 14 pesticides. DLs were also raised when less than two
grams of dust were available. An additional problem with some dust samples
involved the presence of interfering compounds (i.e., compounds that co-eluded with
the target analyte), creating uncertainty and prohibiting assignment of specific
concentratibns.

There were three scenarios for which analysts could provide concentrations
only within an interval, which we accommodated by‘defining a lower bound (LB)
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and an upper bound (UB) of possible values. If the analyte was not detected and no
interferences were present (type I), the LB was set to zero and the UB was set to
the specified DL. If there was an interfering compound but insufficient evidence for
the presence of the target analyte (type II), the GC/MS analyst reported the result
as a nondetect with a detection limit equal to the entire peak of the co-eluting
compounds. We set the LB to zeroc and the UB to 20% of the raised peak, or the DL,
which ever was larger. If the target analyte and the interference were both present
(type IID), the analyst reported an “elevated detect” with a concentration equal to
the entire peak of the co-eluting compounds. We set the LB bound to the maximum
of 20% of the recorded peak, or the DL, and the UB to the maximum of 90% of the
reported peak, or the DL, resulting in an interval bounded away from zero.

For ease of presentation, we allow the replacement of measurements below
the DL with DL/2 (which applies to missing data types I and II) to refer more
generally to the replacement with (LB+UB)/2 (which applies to missing data types

I, IT and IIT).

Methods and analysis

Preliminary analysis indicates that measurement data are consistent with a
log-normal distribution. If Z denotes the measured value of an analyte and is
log-normally distributed, denoted Z~LN(y, 0, then by definition log(Z) is a normal
random variable with mean p and variance o®, denoted log(Z)~N(u, o) (Singh et al.
1997). Suppose X=(X,,,...,Xx) " is a column vector of covariates, with X =1, and
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B=(B,,...,.Bx) " is a column vector of regression parameters, Where “t” denotes vector
transpose. If data are complete, then a linear regression equation has the form
log(Z) = B* X + €, where e~N(0,0%. For each X, the model implies that Z is
log-normally distributed with mean p* X, i.e., Z~LN(B* X, ¢%.

Regression analysis in control data. We evaluate the association
between analyte concentration and pesticide use by fitting a linear regression model
of the logarithm of the analyte level on subject characteristics. Regression
(independent) covariates include indicator variables for season of sample collection,
presence of oriental rugs, study center, sex, age (<45, 45-64, >65 years), race
(Afﬁcan American, Caucasian, other), type of home (single family,
townhouse/duplex/apartment, other), year of home construction (<1940, 1940-1959,
1960-1979, >1980), and edﬁcational level (<12, 12-15, =16 years). As in Colt et al.
(Colt et al. 2004), covariates vary slightly with analyte. Models also include five
variables describing the use of insect treatment products: ever/never used products
to treat for crawling insects, flying ihsects, fleas/ticks, termites, and lawn/garden
insects. We use data from current homes only.

Regression analysis is hampered by the presence of measurements known
only within bounds. We assume that the probability distributions of measurements
below the DL (more precisely within the LB and UB interval) depend only on
observed data, i.e., the interval-measured concentrations arise from the same
distributions that generate the measured values. Let F(*) be the cumulative
distribution function and f(*) the probability density function for a log-normal
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random variable. Suppose X, = (X,,,...,.X,x) " is the covariate vector for the i of
i=1,...,n subjects. LB, and UB, are fecorded for i=1,...,n, individuals, while a specific
Z, measurement is recorded for i=n_+1,...,n +n, individuals. LB and UB are

subscripted to allow different DLs. Using a Tobit regression approach (Gilbert

1987; Persson and Rootzen 197; Tobin 1958), the log-likelihood function has the

form
LB,o% = 5 log[F(Zyy;B'X;,0%) - F(Z5;B'X;,0M)]+ 5 loglf(Z; B*X;,0%)] (1)
i=1 ! ! i=n,+1

The first summand derives from the n_ interval-measured values and involves the
difference of the cumulative distribution function F evaluated at UB and at LB, i.e,,
the probability the measurement lies between the LB and UB. The second
summand derives from the n, detected values. Maximum likelihood estimates
(MLE) for B and their covariance matrix are obtained by maximizing equation (1)
and computing the inverse information matrix using standard methods.
Imputation of missing concentrations. If the goal is the evaluation of
pesticide use and analyte levels in carpet dust, represented by the B parameters,
then the Tobit regression of equation (1) is sufficient and no imputation is required.
If there is the need for further analysis or for graphical display, it is useful to
generate values for measurements below DLs. We consider several different
approaches, including inserting DL/2, inserting E[Z | ZéDL], or using a single or

multiple imputation (Little and Rubin 1987).
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A multiple imputation procedure is carried out as follows. Using all data

(measured concentrations, missing data types I-III, and covariates), we create the

log-likelihood function (1), solve for the MLEs of p and o7, denoted f and 6%, and

impute a value by randomly sampling from a log-normal distribution with the

estimated parameters. However, in selecting fill-in values we cannot ignore that ﬁ
and 62 are themselves estimates with uncertainties. We therefore do not use f and

6% for the imputation, but rather f3 and 62, which are estimated from a bootstrap

sample of the data (Efron 1979). Bootstrap data are generated as described below
by sampling with replacement, and represent a sample from the same universe as
the original data. We repeat the process to create multiple data sets, which are
then independently analyzed and combined in a way that accounts for the
imputation. Differences in regression results in the multiple data sets reflect
variability due to the imputation process.

This procedure however omits a source of variability. We have tacitly
assumed that the LB and UB are fixed and known in advance. When there are no
interfering compounds (missing type I), the assumption is justified since the DL is
determined prior to the GC/MS dust analysis. When there are interfering
compounds (missing types II and III), the assumption cannot be fully justified since
the bounds depend on the amount of interference and therefore are random. In the

NHL data, we assume this uncertainty is small relative to other uncertainties.
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The imputation proceeds as follows.

Step 1: Create a bootstrap sample and obtain estimates B and 2 based on equation

(2). Bootstrap data are generated by sampling with replacement n times from the n
subjects. Sampling “with replacement” selects one record at random, then “puts it
back” and selects a second record. After n repetitions, some subjects are selected
multiple times, while other subjects are not selected at all. If w, is the number of

times the i subject is sampled, then the log-likelihood function for the bootstrap

data 1s
, 0+ 1y
L, 02) D YR log[F(ZUB.§ Bths 02) - F(ZLB.; BtXi’ 02)] oy W log[f(zi; BtXisoz)] (2)
i=1 ! ' i=n,+ 1

Step 2: Impute analyte values based on sampling from LN(B*X,5%). For the i®

subject, assign the value:

F - 1{Unif[F(LB; i, 5%)), F(UB; i, 6%)]; i, 5% 3)

This quantity consists of various elements. F(LB;p'X,5%) and F(UB; BX,52) are

the cumulative probabilities at UL, and UB,, respectively, based on parameters J,

62. Both values lie between zero and one. Select randomly from a uniform
distribution on the interval [a,b], denoted Unif[a,b], in particular, the interval

[FLB;B*X,,6%), F(UB;pX,5%)]. The inverse cumulative distribution function,

F!(+) is the required imputed value in original units between LB, and UB,. Repeat
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using the same f, ° for each missing value. Detected values are not altered.

Step 3: Repeat step 1 and step 2 to create M plausible (or “fill-in”) data sets.
Remarkably, M need not be large, and a recommended value is between 3 and 5,
with larger values if greater proportions of data are missing (Little and Rubin 1987;

Rubin 1987). We select M=10 to fully account for the variance from the imputation.

Step 4: Fit a regression model to each of the M data sets and obtain M sets of
parameter estimates and covariance matrices. Combine the M sets of estimates to
account for the imputation (Little and Rubin 1987; Schafer 1997). The imputation
procedure results in confidence intervals, which are wider than the single-
imputation, fill-in approach.

Simulatiqn study. We conduct a simulation study, using a simple
regression model with zero intercept and no covariates, to evaluate the imputation
approaches and the effects of the proportion of data below the DL and sample size.
We generate data sets of size n by sampling from a log-normal distribution with
parameters (i,6%), and definéd the DL such that in expectation p percent of the
samples falls below the DL, i.e., DL = F"'(p;u,0%). The simulation involves 5,000
independent data sets for each set of parameters. We compared five approaches.

(1) Direct estimation (Tobit regression) of MLEs ({1,6) using equation (1).

(11) Multiple imputation with allowance for uncertainty in model parameters.
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(iii) Single imputation based on a random fill-in value for each datum below
the DL, using MLEs (j1,6%) from equation (1).

(iv) Insertion of DL/2 for all data below the DIL.

(v) Insertion of E[Z | Z<DL] for data below the DL with the expected value

based on the MLEs (f1,6%) from equation (1).

For approaches (i1)-(v), estimators are the mean and variance of the logarithm of the
observed and imputed data, with adjustment for multiple imputation in (ii). We
compare results to estimates based on complete data.

For the NHL example, we use SAS to generate bootstrap samples, fit linear
regressions (PROC REG), solve log-likelihood equations (1) and (2) (PROC
LIFEREQG), and combine results from multiple data sets (PROC MIANALYZE) (SAS
Institute Inc. 2001. The SAS System for Windows, Version 8.2. Cary, NC, USA.)
The simulation was conducted using MATLAB (The MathWorks, Inc. 2004.
MATLAB, The Language of Technical Computing, Version 7.0. Natick, MA 01760-

1500.)

Results

We limit results to four insecticides, propoxur and carbaryl, both carbamate
insecticides, chlorpyrifos, an organophosphate, and a-chlordane, an organochlorine,
which exhibited various types and proportions of missing data.

Regression analysis in control subjects. After omitting subjects missing
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questionnaire data, there are 478 control subjects with carpet dust measurements
and all regression variables. The percentages of measurements below DLs or
known only within bounds vary from 25.7 percent for propoxur to 67.0 percent for
carbaryl (Table 1). The arithmetic mean (AM), geometric mean (GM) and geometric
standard deviation (GSD), with fill-in imputations for interval-measured values,
indicate that concentrations for the individual analytes varied substantially. For
carbaryl and a-chlordane, the GM falls within the range of missing data. Figure 1,
panels A and B, show quantile plots for measurements of propoxur and carbaryl,
and reveal good concordance with a log-normal distribution. Panels A and B show
values used for imputation based on DI./2, denoted by stars, and the conditional
expected value, denoted by triangles. For carbaryl, DI/2 values are nearly twice the
conditional expected values. By construction, the fill-in values conform to the
estimated distribution.

Table 2 shows proportional effects of the use of the insecticide products in
and around the home for direct estimation of regression parameters (Tobit
regression), the multiple imputation approach, the replacement of missing
concentrations by DI./2 and E[Z ]| LB<Z<UB], and a single set of fill-in values.
Results differ slightly from those reported in Colt (Colt et al. 2004) due to
differences 1n regressor variables. For the fill-in approach, we impute missing
values using a model with regression variables (denoted “yes”) and without
regression variables except for an intercept variable (denoted “no”).

In several instances, estimates for the various products differ substantially,
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particularly for analytes with a high percentage of missing data. The multiplicative
standard errors for the single imputation approaches (i.e., inserting D1./2,
E[Z | LB<Z<UB], or a fill-in value) are smaller than standard errors from the
multiple imputation approach and direct estimation. The smaller standard errors
result from an inadequate account of missing data and result in confidence intervals
(CI) which are too narrow and inflated Type I error rates. Table 2 shows several
variables that do not achieve traditional significance levels when imputation is
taken into account. In some instances, there are marked differences in estimates.
Estimated increases in carpet dust levels of a-chlordane among subjects treating for
termites are 2.6 and 3.1-fold based on DL/2 insertion and fill-in methods,
respectively, and 3.7-fold based on multiple imputation and direct estimation
approaches.

Comparing the two fill-in approaches, standard errors are smaller when the
covariate information 1s included, than when covariate information 1s omitted.

Fill-in values are obtained from regression models by sampling from

LN(BtX,c“rZ). Panels C and D in Figure 1 show quantile plots of residuals, i.e.,

expllog(Z) - BtX] for each subject. While GMs of the residuals are close to the

expected value of 1.0 for the error distributions, plots suggest a slight
under-prediction at extreme values for propoxur and carbaryl.
Simulation study. For the simulation study, we set p =0 and ¢’ =1

without loss of generality, and present results for n = 50, 100, 200, and 400 and
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with DLs such that the expected proportions of values below the DL are p=10, 30,
50, and 70 percent. With 5,000 repetitions, the standard error for coverage of 95
percent Cls is 0.003. Table 3 shows that estimates of p based on Tobit regression,
multiple imputation, and single impute fill-in approaches are generally unbiased.
Insertion of DL/2 or E[Z | Z<DL)] results in substantial bias unless the proportion of
missing data is small, 10 percent or less. The table also shows coverage of the 95
percent CI for the estimate of p. In comparison with complete data, Tobit
regression and the multiple imputation approaches are the only methods which
achieve nominal coverage over a broad range of simulation parameters, although
the multiple imputation begins to degrade when more than about 50 percent of the
measurements are below DLs. The single imputation approach results in

anomalous Cls, when about 30 percent or more of the data are below DLs.

Discussion

Results of our analysis of use of pesticide products in and around the home
and pesticide residues in carpet dust, and of the simulation study suggest that the
method of imputation of missing environmental measurement data can
substantially impact estimation of effects and statistical inference. The practice of
inserting a single value, such as DI/2 or the conditional expected value E[Z | Z<DL]
or by analogy DIL/.2, is ill-advised unless there are relatively few measurements
below detection limits. The use of a single imputation to fill-in missing data is
unbiased or minimally biased quite generally, but suffers from inaccurate estimates
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of variance and, as a consequence, Cls that are too narrow, particularly when
missing data exceed about 30 percent. The best protection against biased inference
in the presence of nonignorable missing data is the use of multiple imputation,
although with a high proportion of values below the DL a large number of
measurements are needed. It is worth reiterating however that multiple
imputation is necessary only if explicit values are needed for measurements below
DLs. If the purpose is estimation of regression parameters, then procedures for
truncated data, such as Tobit regression, are nominal (Little and Rubin 1987).

In environmental monitoring, estimation of distributional parameters is often
problematic due to limited numbers of measurements and an inability to evaluate
distributional forms precisely. With 5-15 measurements, MLEs can be biased (Gleit
1985), suggesting the need for more robust approaches (Helsel 1990). With
epidemiologic data, which usually include hundreds or thousands of measurements,
MILEs are unbiased and fully efficient (Gilliom and Helsel 1986), and more detailed
regression analyses are feasible.

When analyzing environmental data on pesticides, Moschandreas et al used a
fill-in imputation approach that applied the “best fitting” probability distribution
for values above a detection limit (Helsel 1990; Moschandreas et al. 2001b;
Moschandreas et al. 2001a), although Helsel and Hirsch (Helsel and Hirsch 2004)
had cautioned that the approach should be used primarily for estimating summary
statistics. The approach we outline permits multiple DLs, incorporates regression
parameters, and applies multiple imputation to account correctly for interval
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measured data and to allow unbiased inference. However, our simulation study
suggests that the fill-in approach may be quite adequate when measurements below
the DL account for less than about 30 percent of the data.

The Tobit regression and multiple imputation approaches assume that the
limits of detection are fixed and known in advance. In our example, we are justified
in assuming DLs are fixed for type I missing measurements, but not for types II and
ITI missing data where limits of detection depend on the amount of interfering
compounds and are random variables. If the DL is not known, an estimate of its
value 1s the minimum order statistic of the observed measurements, that 1is, the
smallest measured value. Simulations suggest that for a random DL estimates
remain unbiased, but variances are underestimated (Zuehlke 2003). Thus, Cls in
Table 2 may be too narrow. However, relative to other sources of uncertainty that
arise in the collection and handling of carpet dust samples, and the accuracy of
questionnaire information, additional uncertainty induced by random DLs for type
IT and III missing values 1s likely small.

Environmental data are frequently well approximated by a log-normal
distribution, and our data on concentrations of pesticide analyte in carpet dust are
consistent with this assumption. Equations (1) and (2) remain valid for more
general distributions, although estimation of parameters may be more problematic
and necessitate potentially computer-intensive search algorithms. Validity of
parameter estimates and their variances depend of course on the correct choice of
error distribution. Our simulation study was based on a correct distributional form;
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however, misspecification of the probability model can lead to markedly biased
results (Paarsch 1984). In the absence of knowledge about the error distribution,
semiparametric and nonparametric methods have been proposed (Austin 2002a;
Chay and Powell 2001; DiNardo and Tobias 2001). Bayesian approaches have also
been suggested in the Tobit regression context (Austin 2002b). A Reviewer
suggested considering the set of measurements of a subject as a vector of
multivariate outcomes, so that the covariance structure among the analytes could
provide information for the imputation process. In our example, this requires the
assumption that the logarithms of the measurements are multivariate normally
distributed. The suggestion however adds complexity as the number of analytes
increases, and additional work is needed to evaluate its practical feasibility.

The motivation for this work arose from the analysis of pesticide analytes in
carpet dusts and use of pesticide products in and around the home. However, data
with DLs arise in a variety of settings including, upper DLs from healthcare related
questionnaire data (Austin 2002a) and psychological profile scores, such as the
Fagerstrom Test for Nicotine Dependence (Fagerstrom and Schneider 1989;
Heatherton et al. 1991), and lower DLs in radiation film badge measurements
(Gilbert et al. 1996; Kerr 1994).

In summary, with epidemiologic data, our analyses indicate that unless there
are very few measurements below DLs (less than 5-10 percent), inserting DI1./2,
E[Z| Z<DL], or any single value to impute missing measurement data is not
advisable. Further, inserting a randomly selected fill-in value is also inadvisable,
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unless the proportion of missing data is less than about 30 percent. Multiple
imputation of missing data is the best approach of ensuring unbiased estimates of

effects and nominal confidence intervals.
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Table 3: Results of simulation study of imputation approaches® for log-normally distributed data
with p=0 and ¢®=1 with a detection limit (DL). Entries are means of 5,000 repetitions.

Sample % <DL Complete Tobit Multi impute Single impute Insert Insert
size data analysis  using ({1.6%) using ({i,62) DL/2 E[Z|Z<DL]
Estimate of p :
n =50 10.0 0.002 0.000 -0.003 -0.003 -0.020 0.007
30.0 0.002 -0.003 -0.003 -0.004 -0.017 0.032
50.0 0.002 -0.004 -0.003 -0.003 0.052 0.073
70.0 0.002 -0.006 -0.005 -0.002 0.229 0.143
Coverage of 95% CI
10.0 0.947 0.944 0.943 0.943 0.943 0.942
30.0 0.947 0.949 0.938 0.928 0.942 0.928
50.0 0.947 0.953 0.928 0.876 0.938 0.832
70.0 0.947 0.931 0.895 0.707 0.280 0.520
Estimate of p
n=100 10.0 0.003 0.002 0.000 0.000 -0.019 0.009
30.0 0.003 0.001 0.000 0.000 -0.015 0.034
50.0 0.003 0.000 0.000 -0.001 0.055 0.076
70.0 0.003 -0.006 - -0.004 -0.002 0.232 0.142
Coverage of 95% CI
10.0 0.944 0.945 0.940 0.940 0.943 0.942
30.0 0.944 0.949 0.938 0.929 0.942 0.914
50.0 0.944 0.948 0.922 0.870 0.910 0.781
70.0 0.944 0.940 0.904 0.721 0.036 0.440
Estimate of p
n=200 10.0 -0.001 -0.002 -0.002 -0.002 -0.023 0.006
30.0 -0.001 -0.003 -0.003 -0.003 -0.019 0.031
50.0 -0.001  -0.002 -0.002 -0.002 0.052 0.074
70.0 -0.001 -0.003 -0.001 -0.002 0.229 0.142
Coverage of 95% CI
10.0 0.952 0.950 0.951 0.950 0.941 0.946
30.0 0.952 0.955 0.936 0.926 0.940 0.904
50.0 0.952 0.948 0.925 0.874 0.877 0.708
70.0 0.952 0.947 0.914 0.725 0.000 0.306
Estimate of p
n=400 10.0 0.001 0.001 0.001 0.001 -0.021 0.008
30.0 0.001 0.000 0.000 0.000 -0.017 0.034
50.0 0.001 0.001 0.001 0.001 0.053 0.076
70.0 0.001 0.000 0.000 0.000 0.230 0.144
Coverage of 95% CI
10.0 0.954 0.954 0.952 0.951 0.931 0.949
30.0 0.954 0.948 0.938 0.928 0.941 0.874
50.0 0.954 0.954 0.927 0.880 0.776 0.545
70.0 0.954 0.947 0.914 0.723 0.000 0.128

*Parameter estimation using observed data with DLs (Tobit analysis), {{,6°}, multiple
imputation with allowance for uncertainty in model parameters (fi,5%), a single imputation using

({1,6%), the insertion of D1/2, and insertion of the expected value conditional on being below the
DL, E[Z|Z<D1l].




Figure legend:

Figure 1: Plots under a log-normal distribution of quantiles of environmental measurements of
propoxur and carbaryl (panels A and B), and of regression residuals of measurements (Z) and
predicted values (Z;,.,) after accounting for covariates (panels C and D). The arithmetic means
(AM), geometric means (GM), and geometric standard deviations (GSD) are computed from
imputed data.
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